Add like
Add dislike
Add to saved papers

Exact molecular direct, cavity, and bridge functions in water system.

The exact molecular bridge function of the extended simple point charge model of liquid water at room temperature is extracted from Monte Carlo (MC) simulation data. The projections gμν mnl (r) onto rotational invariants of the highly directional pair distribution function g(r,Ω) are accumulated during simulation performed with N = 512 molecules (cubic box size L ≈ 25 Å). Making intensive use of anisotropic integral equation techniques, the molecular Ornstein-Zernike equation fed with the MC data available at short distances and completed beyond L/2 with the hypernetted chain closure valid at long distances is then inverted in order to derive on the whole r range the direct correlation function cμν mnl (r), the cavity function yμν mnl (r), the negative excess potential of mean force lnyμν mnl (r), and, finally, the holy grail in such liquid state theory, the bridge function bμν mnl (r) projections. For completeness, the short distance domain inside the soft core can be reached, thanks to the use of a specially designed anisotropic finite potential which replaces the true one between a single pair of molecules in the simulation. The final bridge function b(r,Ω) of bulk water presents strong, non-universal directional features and can now serve as a reference for approximated bridge functions or functionals in liquid physics of aqueous solvents and solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app