Add like
Add dislike
Add to saved papers

MOTS-c peptide increases survival and decreases bacterial load in mice infected with MRSA.

Molecular Immunology 2017 December
Sepsis is a life-threatening disease characterized by uncontrolled inflammatory responses upon pathogen infections, especially for the antibiotic-resistant strains, such as Methicillin-resistant S. aureus (MRSA). Here we demonstrated that a Mitochondria-derived peptide (MOTS-c) could significantly improve the survival rate and decrease bacteria loads in MRSA-challenged mice, accompanied with declined levels of pro-inflammatory cytokines, such as TNF-α, IL-6 and IL-1β, but with increased level of anti-inflammatory cytokine IL-10. Moreover this peptide enhanced bactericidal capacity of macrophages. Meanwhile, MOTS-c inhibited the phosphorylation mitogen-activated protein kinases (MAPK), and enhanced the expression of aryl hydrocarbon receptor (AhR) and signal transducer and activator of transcriptional 3 (STAT3) in macrophages. Overall, MOTS-c plays a beneficial role in curbing the overwhelming inflammatory bursts in the fight against MRSA infection. It may serve as a potential therapeutic agent in sepsis treatment. Highlight.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app