Add like
Add dislike
Add to saved papers

Layered double hydroxide nanoparticles: Impact on vascular cells, blood cells and the complement system.

The mounting interest in layered double hydroxide (LDH) nanoparticles as drug carriers and bio-imaging contrast agents makes biosafety evaluation of LDH essential. Considering the important role of blood circulation in bio-distribution of nanoparticles, the present work evaluated the impact of MgAl-LDHs on key components of the circulatory system, including vascular cells (vascular smooth muscle cells (SMCs) and endothelial cells (HUVECs)), red blood cells (RBCs), and complement activation. The results showed that LDH had no effects on SMCs and HUVECs at concentrations up to 500 and 10 µg/mL respectively, in terms of cell proliferation and viability. LDH (10 µg/mL) did not change either the migration distance or the number of migrating SMCs in culture. Moreover, LDH (400 µg/mL) had a negligible effect on RBCs' lysis, and there was no significant increase in levels of complement activation product, C5a, in the presence of LDH (20 or 200 µg/mL). The low toxicity for vascular cells and blood cells combined with low immunogenicity sheds a light on the biosafety of LDH nanoparticles, and encourages further studies into their biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app