Add like
Add dislike
Add to saved papers

Nitric oxide upregulates expression of alternative oxidase 1 in Chlamydomonas reinhardtii.

The mitochondrial respiratory chain in plants, many fungi and some protists consists of the ATP-coupling cyanide-sensitive cytochrome pathway and the cyanide-resistant alternative respiratory pathway. The alternative pathway is mediated by alternative oxidase (AOX). In unicellular algae, AOXs are monomeric fungi-type proteins. Studies performed in the model plant Chlamydomonas reinhardtii showed that a range of stress factors lead to induction of its AOX1. However, signaling molecules that trigger upregulation of AOX1 have not yet been identified. Here, we were able to discriminate between two alternative oxidases of the alga. In this work, we demonstrated that exposure of C. reinhardtii to nitric oxide (NO) resulted in the up-regulation of AOX1 expression and an increased AOX1 protein. Furthermore, NO-treated C. reinhardtii cells displayed the enhanced AOX1 capacity. We also clearly demonstrated that AOX1 can function in C. reinhardtii when the cytochrome oxidase became inhibited by NO. Although the pathway(s) that leads to increased AOX1 levels and activity upon NO treatment is yet unknown, it is now clear that NO serves as the signal to trigger this regulatory process in C. reinhardtii.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app