Add like
Add dislike
Add to saved papers

PCSK9 Inhibitors: Mechanisms of Action, Metabolic Effects, and Clinical Outcomes.

Atherosclerotic cardiovascular disease (ASCVD) is associated with significant morbidity and mortality worldwide. Increased serum levels of low-density lipoprotein cholesterol (LDL-C) are an independent risk factor for ASCVD, and clinical trial data have shown that lowering LDL-C generally reduces cardiovascular risk. Until recently, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) have been the main therapy for lowering LDL-C. However, some statin-treated patients have persistently elevated residual cardiovascular risk due to inadequate lowering of LDL-C levels or non-LDL-related dyslipidemia. In addition, adverse effects of statins may limit their tolerability and therefore the ability to attain effective doses in some patients. A new class of drugs that inhibit proprotein convertase subtilisin-kexin type 9 (PCSK9) has been developed to treat hyperlipidemia. This review discusses the history and mechanism of action of PCSK9 inhibitors, their metabolic effects, and clinical outcomes associated with these medications, highlighting recent large cardiovascular outcome trials investigating these therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app