JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Ex Uno Plura: Differential Labeling of Phospholipid Biosynthetic Pathways with a Single Bioorthogonal Alcohol.

Biochemistry 2018 January 17
Imaging approaches that track biological molecules within cells are essential tools in modern biochemistry. Lipids are particularly challenging to visualize, as they are not directly genetically encoded. Phospholipids, the most abundant subgroup of lipids, are structurally diverse and accomplish many cellular functions, acting as major structural components of membranes and as signaling molecules that regulate cell growth, division, apoptosis, cytoskeletal dynamics, and numerous other physiological processes. Cells regulate the abundance, and therefore bioactivity, of phospholipids by modulating the activities of their biosynthetic enzymes. Thus, techniques that enable monitoring of flux through individual lipid biosynthetic pathways can provide key functional information. For example, the choline analogue propargylcholine (ProCho) can report on de novo biosynthesis of phosphatidylcholine by conversion to an alkynyl lipid that can be imaged following click chemistry tagging with an azido fluorophore. We report that ProCho is also a substrate of phospholipase D enzymes-which normally hydrolyze phosphatidylcholine to generate the lipid second messenger phosphatidic acid-in a transphosphatidylation reaction, generating the identical alkynyl lipid. By controlling the activities of phosphatidylcholine biosynthesis and phospholipase D enzymes, we establish labeling conditions that enable this single probe to selectively report on two different biosynthetic pathways. Just as nature exploits the economy of common metabolic intermediates to efficiently diversify biosynthesis, so can biochemists in interrogating such pathways with careful probe design. We envision that ProCho's ability to report on multiple metabolic pathways will enable studies of membrane dynamics and improve our understanding of the myriad roles that lipids play in cellular homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app