Add like
Add dislike
Add to saved papers

Hydrogen bond directed surface dynamics at tactic poly(methyl methacrylate)/water interface.

Soft Matter 2017 November 23
The complexity of induced ordering for tactic poly(methyl methacrylate) (PMMA) thin films in contact with water is examined through all-atom molecular dynamics with validated potentials. We observe that for the water molecules that are hydrogen bonded to the PMMA surface, the isotactic and atactic PMMA show a 33% longer relaxation time compared to syndiotactic PMMA. Almost 94% of hydrogen bonds are with the carbonyl groups of PMMA, irrespective of temperature and tacticity. The stability in re-orientation and nature of hydrogen bond participation for the carbonyl groups as well as about 20% higher interaction energies of carbonyl group hydrogen bonded with water for atactic form indicates existence of cooperative effects. Quantifying the dynamics of hydrogen bond at the tactic interface is important in understanding the role tacticity plays in controlling adhesion and biocompatibility, a design choice that has been gaining ground in the soft material science community.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app