Add like
Add dislike
Add to saved papers

Hydrogel/fiber conductive scaffold for bone tissue engineering.

Hydrogel/fiber composites have emerged as compelling scaffolds for regeneration purposes. Any biorelated modification or feature may endow more regenerative functionality to these composites. In the present study, a hydrogel/fiber scaffold possessing electrical conductivity in both phases, hydrogel and fiber, has been prepared and evaluated. Fiber component possessed electrical conductivity due to the presence of polyaniline (PANi) and hydrogel fraction thanks to the presence of graphene nanoparticles. PANi based fibers were processed through electrospinning and transformed into a three-dimensional structure through ultrasonication. The hydrogel precursor solution composed of oxidized polysaccharides, gelatin and graphene with predesigned ratio was added to fibers and left to gel. The results of assessments on pristine hydrogel and hydrogel/fiber denoted that inclusion of conducting fibers into hydrogel increased elastic modulus, roughness and electrical conductivity, whereas decreased hydrophilicity. Moreover, the results showed that hydrogel/fiber composite better supported human osteoblast-like cell adhesion, proliferation, and morphology comparing hydrogel alone. In a nutshell, the presence of gel/fiber architecture along with electrical conductivity may lead the scaffold to be very promising for bone regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 718-724, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app