Add like
Add dislike
Add to saved papers

In vivo-like 3-D model for sodium nitrite- and acrylamide-induced hepatotoxicity tests utilizing HepG2 cells entrapped in micro-hollow fibers.

Scientific Reports 2017 November 2
To address the need for a high throughput toxicity test in the modern food industry, an in vivo-like 3-D cell model was constructed in this study to provide an alternative to controversial long-term animal models and to improve the sensitivity and accuracy of the traditional monolayer model. The model formed cell cylindroids within polyvinylidene fluoride (PVDF) hollow fibers and therefore mimicked the microenvironment of liver tissue. Microscopy methods were used, and liver-specific functions were measured to demonstrate the superiority of the model compared to the monolayer model, as well as to optimize the model for best cell performances. Later, toxicity tests of sodium nitrite and acrylamide were conducted in both the 3-D model and the monolayer model to study the sensitivity of the 3-D model in toxicity responses. As expected, HepG2 cells within the 3-D model responded at lower concentrations and shorter exposure times compared to cells within the monolayer model. Furthermore, western blot analysis of apoptosis pathways also supported the argument.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app