Add like
Add dislike
Add to saved papers

Effects of the Antiepileptic Drugs Phenytoin, Gabapentin, and Levetiracetam on Bone Strength, Bone Mass, and Bone Turnover in Rats.

Long-term treatment with antiepileptic drugs (AEDs) is accompanied by reduced bone mass that is associated with an increased risk of bone fractures. Although phenytoin has been reported to adversely influence bone metabolism, little is known pertaining to more recent AEDs. The aim of this study was to evaluate the effects of gabapentin or levetiracetam on bone strength, bone mass, and bone turnover in rats. Male Sprague-Dawley rats were orally administered phenytoin (20 mg/kg), gabapentin (30 or 150 mg/kg), or levetiracetam (50 or 200 mg/kg) daily for 12 weeks. Bone histomorphometric analysis of the tibia was performed and femoral bone strength was evaluated using a three-point bending method. Bone mineral density (BMD) of the femur and tibia was measured using quantitative computed tomography. Administration of phenytoin significantly decreased bone strength and BMD, which was associated with enhanced bone resorption. In contrast, treatment with gabapentin (150 mg/kg) significantly decreased bone volume and increased trabecular separation, as shown by bone histomorphometric analysis. Moreover, the bone formation parameters, osteoid volume and mineralizing surface, decreased after gabapentin treatment, whereas the bone resorption parameters, osteoclast surface and number, increased. Levetiracetam treatment did not affect bone strength, bone mass, and bone turnover. Our data suggested that gabapentin induced the rarefaction of cancellous bone, which was associated with decreased bone formation and enhanced bone resorption, and may affect bone strength and BMD after chronic exposure. To prevent the risk of bone fractures, patients prescribed a long-term administration of gabapentin should be regularly monitored for changes in bone mass.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app