Add like
Add dislike
Add to saved papers

Characterization of Multilayered Tissue-Engineered Human Alveolar Bone and Gingival Mucosa.

Advances in tissue engineering have permitted assembly of multilayered composite tissue constructs for potential applications in the treatment of combined hard and soft tissue defects and as an alternative in vitro test model to animal experimental systems. The aim of this study was to develop and characterize a novel three-dimensional combined human alveolar bone and gingival mucosal model based on primary cells isolated from the oral tissues. Bone component of the model was engineered by seeding primary human alveolar osteoblasts into a hydroxyapatite/tricalcium phosphate scaffold and culturing in a spinner bioreactor. The engineered bone was then laminated, using an adhesive tissue sealant, with tissue-engineered gingival mucosa consisting of air/liquid interface-cultured normal human gingival keratinocytes on oral fibroblast-populated collagen gel scaffold. Histological characterization revealed a structure consisting of established epithelial, connective tissue and bone layers closely comparable to normal oral tissue architecture. The mucosal component demonstrated a mature epithelium undergoing terminal differentiation similar to that characteristic of native buccal mucosa, as confirmed using cytokeratin 13 and cytokeratin 14 immunohistochemistry. Ultrastructural analysis confirmed the presence of desmosomes and hemidesmosomes in the epithelial layer, a continuous basement membrane, and newly synthesized collagen in the connective tissue layer. Quantitative polymerase chain reaction (qPCR) assessment of osteogenesis-related gene expression showed a higher expression of genes encoded collagen I (COL1) and osteonectin (ON) compared with osteocalcin (OC), osteopontin (OP), and alkaline phosphatase (ALP). Enzyme-linked immunosorbent assay quantification of COL1, ON, and OC confirmed a pattern of secretion, which paralleled the model's gene expression profile. We demonstrate in this study that, replicating the anatomical setting between oral mucosa and the underlying alveolar bone is feasible and the developed model showed characteristics similar to those of normal tissue counterparts. This trilayered model therefore offers great scope as an advanced and anatomically representative tissue-engineered alternative to animal models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app