Add like
Add dislike
Add to saved papers

A brain-controlled lower-limb exoskeleton for human gait training.

Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app