Add like
Add dislike
Add to saved papers

A general approach to obtain soft x-ray transparency for thin films grown on bulk substrates.

We present a general approach to thin bulk samples to transparency for experiments in the soft x-ray and extreme ultraviolet spectral range. The method relies on mechanical grinding followed by focused-ion-beam milling. It results in a uniformly thin area of high surface quality, suitable for nanoscale imaging in transmission. In a proof-of-principle experiment, nanoscale magnetic bits on a commercial hard drive glass disk are imaged with a spatial resolution below 30 nm by soft x-ray spectro-holography. Furthermore, we demonstrate imaging of a lithographically patterned test object via absorption contrast. Our approach is suitable for both amorphous and crystalline substrates and has been tested for a variety of common epitaxy growth substrates. Lateral thinning areas in excess of 100 μm2 and a remaining substrate thickness as thin as 150 nm are easily achievable. Our approach allows preserving a previously grown thin film, and from nanofocus electron diffraction, we find no evidence for morphological changes induced by the process, in agreement with numerical simulations of the ion implantation depth distributon. We expect our method to be widely applicable and especially useful for nanoscale imaging of epitaxial thin films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app