Add like
Add dislike
Add to saved papers

Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns.

Chaos 2017 October
The interplay of reaction and diffusion processes can trigger localized spatiotemporal patterns when two solutions containing separate reactants A and B of an oscillating reaction are put in contact. Using the Brusselator, a classical model for chemical oscillations, we show numerically that localized waves and Turing patterns as well as reaction-diffusion (RD) patterns due to an interaction between these two kinds of modes can develop in time around the reactive contact zone depending on the initial concentration of reactants and diffusion coefficients of the intermediate species locally produced. We further explore the possible hydrodynamic destabilization of an initially buoyantly stable stratification of such an A + B → oscillator system, when the chemical reaction provides a buoyant periodic forcing via localized density changes. Guided by the properties of the underlying RD dynamics, we predict new chemo-hydrodynamic instabilities on the basis of the dynamic density profiles which are here varying with the concentration of one of the intermediate species of the oscillator. Nonlinear simulations of the related reaction-diffusion-convection equations show how the active coupling between the localized oscillatory kinetics and buoyancy-driven convection can induce pulsatile convective fingering and pulsatile plumes as well as rising or sinking Turing spots, depending on the initial concentration of the reactants and their contribution to the density.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app