Add like
Add dislike
Add to saved papers

Superfast high-resolution absolute 3D recovery of a stabilized flapping flight process.

Optics Express 2017 October 31
Scientific research of a stabilized flapping flight process (e.g. hovering) has been of great interest to a variety of fields including biology, aerodynamics, and bio-inspired robotics. Different from the current passive photogrammetry based methods, the digital fringe projection (DFP) technique has the capability of performing dense superfast (e.g. kHz) 3D topological reconstructions with the projection of defocused binary patterns, yet it is still a challenge to measure a flapping flight process with the presence of rapid flapping wings. This paper presents a novel absolute 3D reconstruction method for a stabilized flapping flight process. Essentially, the slow motion parts (e.g. body) and the fast-motion parts (e.g. wings) are segmented and separately reconstructed with phase shifting techniques and the Fourier transform, respectively. The topological relations between the wings and the body are utilized to ensure absolute 3D reconstruction. Experiments demonstrate the success of our computational framework by testing a flapping wing robot at different flapping speeds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app