Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Total Hip Bone Area Affects Fracture Prediction With FRAX® in Canadian White Women.

Context: Areal bone mineral density (BMD) measurements are confounded by skeletal size. Hip BMD is an input to the FRAX® tool (Centre for Metabolic Bone Diseases, University of Sheffield, United Kingdom), but it is unknown whether performance is affected by hip area.

Objective: To examine whether fracture prediction by FRAX® is affected by hip area.

Design and Setting: Cohort study using a population-based BMD registry.

Patients: A total of 58,108 white women aged ≥40 years.

Main Outcome Measures: Incident major osteoporotic fracture (MOF; n = 4913) and hip fracture (n = 1369), stratified by total hip area quintile, before and after adjustment for hip axis length (HAL).

Results: Smaller hip area was associated with younger age and lower FRAX® scores, whereas incident fractures were greater in those with larger hip area (P for trend < 0.001). Larger hip area quintile increased risk for MOF and hip fracture when adjusted for FRAX® score with BMD (P for trend < 0.001). Each standard deviation increase in hip area was associated with greater risk for incident MOF [adjusted hazard ratio (HR), 1.08; 95% confidence interval (CI), 1.05 to 1.11] and hip fracture (HR, 1.16; 95% CI, 1.11 to 1.21), but not after adjustment for HAL. FRAX® with BMD underestimated MOF risk in the largest hip area quintile and underestimated hip fracture risk in the three largest hip area quintiles.

Conclusions: In Canadian white women, skeletal size based on hip area affects fracture risk assessment based on FRAX® score with BMD, with risk underestimated in those with larger hip areas. Including HAL in the risk assessment compensates for this confounding by skeletal size and provides for more accurate assessment of fracture risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app