Add like
Add dislike
Add to saved papers

Flat metaform near-eye visor.

Applied Optics 2017 November 2
A near-eye visor is one of the most vital components in a head-mounted display. Currently, freeform optics and waveguides are used to design near-eye visors, but these structures are complex and their field of view is limited when the visor is placed near the eye. In this paper, we propose a flat, freeform near-eye visor that uses a subwavelength patterned metasurface reflector. The visor design imparts a spatial phase profile on a projected display pattern and can be implemented using a micron-scale-thick metasurface. As the resulting metaform visor relies on diffraction, it can preserve a large field of view (77.3° both horizontally and vertically) when placed only 2.5 cm away from the eye. We simulate the metasurface visor to estimate the modulation transfer function, and find that the projected image quality is sufficiently high for human vision. While the design of the metasurface is initially performed via ray optics, using full-wave finite-difference time-domain simulation we validate a scaled version of our visor design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app