Add like
Add dislike
Add to saved papers

An empirical potential for simulating vacancy clusters in tungsten.

We present an empirical interatomic potential for tungsten, particularly well suited for simulations of vacancy-type defects. We compare energies and structures of vacancy clusters generated with the empirical potential with an extensive new database of values computed using density functional theory, and show that the new potential predicts low-energy defect structures and formation energies with high accuracy. A significant difference to other popular embedded-atom empirical potentials for tungsten is the correct prediction of surface energies. Interstitial properties and short-range pairwise behaviour remain similar to the Ackford-Thetford potential on which it is based, making this potential well-suited to simulations of microstructural evolution following irradiation damage cascades. Using atomistic kinetic Monte Carlo simulations, we predict vacancy cluster dissociation in the range 1100-1300 K, the temperature range generally associated with stage IV recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app