Add like
Add dislike
Add to saved papers

DNA nanotubes assembled from tensegrity triangle tiles with circular DNA scaffolds.

Nanoscale 2017 November 17
Using small circular DNA molecules of different lengths as scaffolds, we successfully synthesised DNA nanotubes consisting of Mao's DNA tensegrity triangle tiles with four-arm junctions (Holliday junctions) at all vertices. Due to the intrinsic curvature of the triangle tile and the consecutive tile alignment, the 2D arrays are organised in the form of nanotubes. Two sized triangle tiles with equilateral side lengths of 1.5 and 2.5 full helical turns are connected by the sticky ended cohesion of a duplex with a length of 2.5 helical turns respectively, and their parallel lozenge tiling lattices were demonstrated by high resolution AFM images, where the former lozenge unit cell has a lattice constant of 13.6 nm, and the latter has a larger lattice constant of 17.0 nm. Modification of the triangle tile with infinitesimal disturbance on side lengths and insertion of one thymine single stranded loop at every vertex resulted in comparably similar nanotubes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app