Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Strong O 2p-Fe 3d Hybridization Observed in Solution-Grown Hematite Films by Soft X-ray Spectroscopies.

Photoelectrochemical (PEC) water splitting holds the potential as a direct route for solar energy conversation and storage. The performance of a PEC device is strongly influenced by the electronic properties of the photonanode surface. It has been shown that the synthesis methods can have a profound impact on the electronic properties and PEC performance of various photoelectrode materials such as hematite. Soft X-ray spectroscopic techniques, including O K-edge XAS and Fe L-edge XAS/XES, have been employed to investigate how the synthesis methods impact the electronic structure of resulting hematite materials. It is found that the hematite samples via solution regrowth methods show dramatically increased 3d-4sp band ratios in O K-edge XAS spectra and decreased relative elastic peak intensities in Fe L-edge RIXS spectra compared with samples synthesized via ALD or solution grown. The difference observed in O-K and Fe-L spectra indicated that solution regrowth strategy alters the O 2p-Fe 3d hybridization and hence the electronic structure of the hematite films, which proves to be beneficial for PEC performance of the hematite photoanode. Our findings provided new insights and potentially useful strategies for enhancing the PEC performance of photoanode materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app