Add like
Add dislike
Add to saved papers

Liver Genes Expression Induced by Tamoxifen Loaded Solid Lipid Nanoparticles in Wistar Female Rats.

The objective of this study was to investigate the effect of free tamoxifen and tamoxifen-loaded solid lipid nanoparticles (SLN) on cytochrome P450 (CYP3A2) and flavin-containing monooxygenase1 (FMO1) genes expression in the liver of female Wistar rats. Thirty female Wistar rats aged 7-8 weeks, were divided into six groups of six rats each. The first, second, third, and fourth groups were ovariectomized and received tamoxifen (2  mg/kg of body weight dissolved in 1  ml olive oil), tamoxifen-loaded SLN (2  mg/kg of body weight dispersed in 1  ml olive oil), SLN (10  mg/kg of body weight dispersed in 1  ml olive oil), and 1  ml olive oil, respectively. The fifth group comprised untreated ovariectomized control group and the sixth group served as unovariectomized healthy group. The treatments were given orally to the animals on 21 consecutive days using gastric intubations. At the end of the study, the rats were scarified and studied for some serum biochemical profile and two liver genes expression. The group treated with tamoxifen-loaded SLN showed significantly increased gene expression of CYP3A2 in comparison with the control, healthy, and group treated with free tamoxifen. The gene expression of FMO1 in the group that received tamoxifen-loaded SLN was significantly lower than that in the group treated with free tamoxifen. In addition, the group treated with free tamoxifen showed significantly increased gene expression of FMO1 as compared to the control and healthy groups. Encapsulation of tamoxifen inside solid lipid nanoparticles increased the gene expression of CYP3A2 and decreased the gene expression of FMO1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app