Add like
Add dislike
Add to saved papers

Pepsin-Assisted Transglutaminase Modification of Functional Properties of a Protein Isolate Obtained from Industrial Sunflower Meal.

The utilization of industrial sunflower meal to produce protein-rich products for the food industry is an alternative approach for better and more efficient use of this agricultural by-product. Sunflower meal proteins possess specific functional properties, which however need improvement to broaden their potential as supplements for delivering high--quality products for human nutrition. The aim of the study is to evaluate the combined influence of low-degree pepsin hydrolysis and transglutaminase (TG) modification on industrial sunflower meal protein isolate functionality at pH=2 to 10. Three TG-modified pepsin hydrolysates with the degree of hydrolysis of 0.48, 0.71 and 1.72% were produced and named TG-PH1, TG-PH2 and TG-PH3, respectively. All three TG-modified pepsin hydrolysates exhibited improved solubility at pH between 3.5 and 5.5 as the highest was observed of TG-PH3 at protein isoelectric point (pI=4.5). Sunflower meal protein isolate and TG-modified sunflower meal protein isolate had greater solubility than the three TG-modified hydrolysates at pH<3 and >7. Significant improvement of foam making capacity (p<0.05) was achieved with all three TG-modified pepsin hydrolysates in the entire pH area studied. Pepsin hydrolysis of the protein isolate with the three degrees of hydrolysis did not improve foam stability. Improved thermal stability was observed with TG-PH3 up to 80 °C compared to the protein isolate (pH=7). At 90 °C, TG modification of the protein isolate alone resulted in the highest thermal stability. Pepsin hydrolysis followed by a treatment with TG could be used to produce sunflower protein isolates with improved solubility, foam making capacity and thermal stability for use in the food industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app