Add like
Add dislike
Add to saved papers

Correlation Between Mitochondrial DNA Content Measured in Myocardium and Peripheral Blood of Patients with Non-Ischemic Heart Failure.

BACKGROUND/OBJECTIVES: Heart failure (HF) is associated with disturbances in mitochondrial energy production. This mitochondrial dysfunction is reflected by depletion of mitochondrial DNA (mtDNA) in different tissues. Our aims were to determine if there was a correlation between mtDNA content measured in myocardial tissue and the easily accessible peripheral blood cells of patients with non-ischemic HF; and to determine if there was a correlation between myocardial mtDNA and left ventricular (LV) ejection fraction.

METHODS: We prospectively collected paired myocardial tissue and peripheral blood samples from 13 consecutive end-stage non-ischemic HF patients undergoing cardiac transplantation. mtDNA content was assessed with real-time quantitative PCR by calculating the relative ratio of two specific mitochondrial sequences and one nuclear control gene sequence.

RESULTS: HF patients with lower myocardial mtDNA content had a significantly lower LV ejection fraction (r = 0.65, p = 0.016). Peripheral blood mtDNA content correlated positively with right ventricular myocardial mtDNA content (r = 0.63, p = 0.021). We also observed that averaged myocardial DNA content tended to correlate with peripheral blood mtDNA content (r = 0.53, p = 0.061).

CONCLUSIONS: In non-ischemic HF patients, myocardial mtDNA content is positively correlated with peripheral blood mtDNA content and LV function as assessed by echocardiography.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app