Add like
Add dislike
Add to saved papers

Alternative Approaches to Addressing Non-Normal Distributions in the Application of IRT Models to Personality Measures.

It is generally assumed that the latent trait is normally distributed in the population when estimating logistic item response theory (IRT) model parameters. This assumption requires that the latent trait be fully continuous and the population homogenous (i.e., not a mixture). When this normality assumption is violated, models are misspecified, and item and person parameter estimates are inaccurate. When normality cannot be assumed, it might be appropriate to consider alternative modeling approaches: (a) a zero-inflated mixture, (b) a log-logistic, (c) a Ramsay curve, or (d) a heteroskedastic-skew model. The first 2 models were developed to address modeling problems associated with so-called quasi-continuous or unipolar constructs, which apply only to a subset of the population, or are meaningful at one end of the continuum only. The second 2 models were developed to address non-normal latent trait distributions and violations of homogeneity of error variance, respectively. To introduce these alternative IRT models and illustrate their strengths and weaknesses, we performed real data application comparing results to those from a graded response model. We review both statistical and theoretical challenges in applying these models and choosing among them. Future applications of these and other alternative models (e.g., unfolding, diffusion) are needed to advance understanding about model choice in particular situations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app