Add like
Add dislike
Add to saved papers

Effect of propeptide amino acid substitution in γ-carboxylation, activity and expression of recombinant human coagulation factor IX.

The production of recombinant vitamin K dependent (VKD) proteins for therapeutic purposes is an important challenge in the pharmaceutical industry. These proteins are primarily synthesized as precursor molecules and contain pre-propeptide sequences. The propeptide is connected to γ-carboxylase enzyme through the γ-carboxylase recognition site for the direct γ-carboxylation of VKD proteins that has a significant impact on their biological activity. Propeptides have different attitudes toward γ-carboxylase and certain amino acids in propeptide sequences are responsible for the differences in γ-carboxylase affinity. By aiming to replace amino acids in hFIX propeptide domain based on the prothrombin propeptide, pMT-hFIX-M14 expression cassette, containing cDNA of hFIX with substituted -14 residues (Asp to Ala) was made. After transfection of Drosophila S2 cells, expression of the active hFIX was analyzed by performing ELISA and coagulation test. A 1.4-fold increase in the mutant recombinant hFIX expression level was observed in comparison with that of a native recombinant hFIX. The enhanced hFIX activity and specific activity of the hFIXD-14A (2.2 and 1.6 times, respectively) were further confirmed by comparing coagulation activity levels of substituted and native hFIX. Enrichment for functional, fully γ-carboxylated hFIX species via barium citrate adsorption demonstrated 2-fold enhanced recovery in the S2-expressing hFIXD-14A relative to that expressed native hFIX. These results show that changing -14 residues leads to a decrease in the binding affinity to substrate, increase in γ-carboxylation and activity of recombinant hFIX. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:515-520, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app