Add like
Add dislike
Add to saved papers

Collision Induced Dissociation of Benzylpyridinium-Substituted Porphyrins: Towards a Thermometer Scale for Multiply Charged Ions?

We have determined breakdown curves for a range of multiply charged benzylpyridinium-substituted porphyrin cations by collision induced dissociation measurements (CID) as mediated by resonant pulsed radio-frequency (rf) excitation in a helium-filled linear ion trap. Measurements were compared with the predictions of DFT calculations. We find a linear correlation between experimental fragmentation thresholds (in instrumental units of "normalized collision energy") and theoretical dissociation energies, suggesting that these species can be used as calibrants to gauge the fragmentation energetics of closely related systems. We have confirmed this by also studying the fragmentation thresholds of metalloporphyrin-based ions - including multiply negatively charged metalloporphyrin oligomers. Unfortunately, the slope of the linear correlation obtained for benzylpyridinium-substituted porphyrin multications differs significantly from that obtained by us for a set of smaller, singly charged substituted benzylpyridines put forward as "thermometer" ions in previous work. Multiplying the threshold energies in an ad hoc fashion by the ion charge basically reconciles both calibration curves. We conclude that one should use caution when applying small, singly charged benzylpyridines as calibrants to gauge the CID of large, multiply charged ions in ion-trap mass spectrometers. Graphical Abstract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app