Add like
Add dislike
Add to saved papers

Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis.

Advanced Materials 2017 December
The development of active and durable bifunctional electrocatalysts for overall water splitting is mandatory for renewable energy conversion. This study reports a general method for controllable synthesis of a class of IrM (M = Co, Ni, CoNi) multimetallic porous hollow nanocrystals (PHNCs), through etching Ir-based, multimetallic, solid nanocrystals using Fe3+ ions, as catalysts for boosting overall water splitting. The Ir-based multimetallic PHNCs show transition-metal-dependent bifunctional electrocatalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic electrolyte, with IrCo and IrCoNi PHNCs being the best for HER and OER, respectively. First-principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much-enhanced OER activity. The IrCoNi PHNCs are highly efficient in overall-water-splitting catalysis by showing a low cell voltage of only 1.56 V at a current density of 2 mA cm-2 , and only 8 mV of polarization-curve shift after a 1000-cycle durability test in 0.5 m H2 SO4 solution. This work highlights a potentially powerful strategy toward the general synthesis of novel, multimetallic, PHNCs as highly active and durable bifunctional electrocatalysts for high-performance electrochemical overall-water-splitting devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app