Add like
Add dislike
Add to saved papers

Efficient ℓ 0 -norm feature selection based on augmented and penalized minimization.

Statistics in Medicine 2018 Februrary 11
Advances in high-throughput technologies in genomics and imaging yield unprecedentedly large numbers of prognostic biomarkers. To accommodate the scale of biomarkers and study their association with disease outcomes, penalized regression is often used to identify important biomarkers. The ideal variable selection procedure would search for the best subset of predictors, which is equivalent to imposing an ℓ0 -penalty on the regression coefficients. Since this optimization is a nondeterministic polynomial-time hard (NP-hard) problem that does not scale with number of biomarkers, alternative methods mostly place smooth penalties on the regression parameters, which lead to computationally feasible optimization problems. However, empirical studies and theoretical analyses show that convex approximation of ℓ0 -norm (eg, ℓ1 ) does not outperform their ℓ0 counterpart. The progress for ℓ0 -norm feature selection is relatively slower, where the main methods are greedy algorithms such as stepwise regression or orthogonal matching pursuit. Penalized regression based on regularizing ℓ0 -norm remains much less explored in the literature. In this work, inspired by the recently popular augmenting and data splitting algorithms including alternating direction method of multipliers, we propose a 2-stage procedure for ℓ0 -penalty variable selection, referred to as augmented penalized minimization-L0 (APM-L0 ). The APM-L0 targets ℓ0 -norm as closely as possible while keeping computation tractable, efficient, and simple, which is achieved by iterating between a convex regularized regression and a simple hard-thresholding estimation. The procedure can be viewed as arising from regularized optimization with truncated ℓ1 norm. Thus, we propose to treat regularization parameter and thresholding parameter as tuning parameters and select based on cross-validation. A 1-step coordinate descent algorithm is used in the first stage to significantly improve computational efficiency. Through extensive simulation studies and real data application, we demonstrate superior performance of the proposed method in terms of selection accuracy and computational speed as compared to existing methods. The proposed APM-L0 procedure is implemented in the R-package APML0.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app