JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

The Generation of Three-Dimensional Head and Neck Cancer Models for Drug Discovery in 384-Well Ultra-Low Attachment Microplates.

The poor success rate of cancer drug discovery has prompted efforts to develop more physiologically relevant cellular models for early preclinical cancer lead discovery assays. For solid tumors, this would dictate the implementation of three-dimensional (3D) tumor models that more accurately recapitulate human solid tumor architecture and biology. A number of anchorage-dependent and anchorage-independent in vitro 3D cancer models have been developed together with homogeneous assay methods and high content imaging approaches to assess tumor spheroid morphology, growth, and viability. However, several significant technical challenges have restricted the implementation of some 3D models in HTS. We describe a method that uses 384-well U-bottomed ultra-low attachment (ULA) microplates to produce head and neck tumor spheroids for cancer drug discovery assays. The production of multicellular head and neck cancer spheroids in 384-well ULA-plates occurs in situ, does not impose an inordinate tissue culture burden for HTS, is readily compatible with automation and homogeneous assay detection methods, and produces high-quality uniform-sized spheroids that can be utilized in cancer drug cytotoxicity assays within days rather than weeks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app