Add like
Add dislike
Add to saved papers

Noncovalent interactions underlying binary mixtures of amino acid based ionic liquids: insights from theory.

Mixtures of ionic liquids formed by blending a common 1-methyl-3-butylimidazolium [Bmim] cation with the dicarboxylic amino acid anions viz., aspartic acid [Asp], asparagine [Asn], glutamic acid [Glu], and glutamine [Gln], have been investigated by employing dispersion corrected density functional theory. Binary mixtures of [Bmim]2 [Asp][Asn] and [Bmim]2 [Glu][Gln] ionic liquids emerge with distinct structural patterns. Competition between the constituting anions towards cationic binding sites in acidic and basic (polar) amino acid binary mixtures engenders diverse noncovalent interactions, viz., C-HO hydrogen bonding, π-π stacking, and lpπ and CHπ interactions, which impart local liquid structure to these systems governing the structural and physicochemical properties of such double salt ionic liquids (DSILs). The DSIL conformers reveal distinct structural features arising from the middle, normal and front arrangements of anions combined with parallel, antiparallel, rotated or displaced orientations of the cations. The inclusion of dispersion corrections through the D3 method affects their binding energies significantly bringing forth alteration in their energy rank order. Molecular insights accompanying the ion aggregates provide directives for the use of DSILs with improved performance in tribological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app