Add like
Add dislike
Add to saved papers

Δ 9 -Tetrahydrocannabinol Experience Influences ΔFosB and Downstream Gene Expression in Prefrontal Cortex.

Introduction: Repeated administration of abused drugs, including Δ9 -tetrahydrocannabinol (THC), induces the stable transcription factor ΔFosB in dopaminergic terminal field regions of the mesolimbic system. These studies investigated the effect of prior repeated THC treatment on THC-induced ΔFosB expression and regulation of downstream targets in the forebrain. Methods: Mice received THC (10 mg/kg) or vehicle twice daily for 13 days, and then half of each group received a single injection of THC or vehicle 45 min before brain collection. ΔFosB messenger RNA (mRNA) and protein were measured by polymerase chain reaction and immunoblotting, respectively. Potential downstream targets of ΔFosB induction were measured by immunoblot. Results: THC injection in mice with a history of repeated THC treatment enhanced ΔFosB expression as compared with vehicle in the prefrontal cortex (PFC), nucleus accumbens (NAc), and amygdala. This change occurred concomitantly with an increase in ΔFosB mRNA in the PFC and NAc. THC injection in mice with a history of repeated THC treatment increased expression of cyclin-dependent kinase 5 (Cdk5) and its regulatory protein p35 only in the PFC. This increase in Cdk5 and p35 expression in PFC was also found in mice that had only received repeated THC administration, suggesting that this effect might be due to induction of ΔFosB. Extracellular signal-regulated kinase (ERK) phosphorylation was increased in PFC after THC injection in repeated THC-treated mice. Phosphorylation of glycogen synthase kinase-3β (GSK3β), a Cdk5 target, was reduced in PFC after repeated THC treatment regardless of THC history, and phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at the Cdk5-regulated threonine 75 site was unchanged. Conclusion: These results suggest that a history of repeated THC administration primes THC-mediated induction of ΔFosB in the NAc and PFC, and that expression of both downstream targets of ΔFosB (e.g., Cdk5 and p35) and upstream activators (e.g., pERK) in the PFC is dependent on THC history, which might have functional implications in addiction and neuropsychiatric disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app