Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fezf1 is a novel regulator of female sex behavior in mice.

Female sexual behavior is a complex process regulated by multiple brain circuits and influenced by sex steroid hormones acting in the brain. Several regions in the hypothalamus have been implicated in the regulation of female sexual behavior although a complete circuitry involved in female sexual behavior is not understood. Fez family zinc finger 1 (Fezf1) gene is a brain specific gene that has been mostly studied in the context of olfactory development, although in a recent study, FEZF1 has been identified as one of the genes responsible for the development of Kallman syndrome. In the present study, we utilized shRNA approach to downregulate Fezf1 in the ventromedial nucleus of the hypothalamus (VMN) with the aim to explore the role of this gene. Adult female mice were stereotaxically injected with lentiviral vectors encoding shRNA against Fezf1 gene. Mice injected with shRNA against Fezf1 had significantly reduced female sexual behavior, presumably due to the downregulation of estrogen receptor alpha (ERα), as the number of ERα-immunoreactive cells in the VMN of Fezf1 mice was significantly lower in comparison to controls. However, no effect on body weight or physical activity was observed in mice with downregulated Fezf1, suggesting that the role of Fezf1 in the VMN is limited to the regulation of sexual behavior.

SIGNIFICANCE STATEMENT: Fezf1 gene has been identified in the present study as a regulator of female sexual behavior in mice. Regulation of the female sexual behavior could be through the regulation of estrogen receptor alpha expression in the ventromedial nucleus of the hypothalamus, as the expression of this receptor was reduced in mice with downregulated Fezf1. As expression of Fezf1 is very specific in the brain, this gene could present a potential target for the development of novel drugs regulating hypoactive sexual desire disorder in women, if similar function of FEZF1 will be confirmed in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app