Add like
Add dislike
Add to saved papers

Depletion of Mageb16 induces differentiation of pluripotent stem cells predominantly into mesodermal derivatives.

Scientific Reports 2017 October 28
The Melanoma-associated Antigen gene family (MAGE) generally encodes for tumour antigens. We had identified that one of the MAGE gene members, Mageb16 was highly expressed in undifferentiated murine embryonic stem cells (ESCs). While the role of Mageb16 in stemness and differentiation of pluripotent stem cells is completely unknown, here, in our current study, we have demonstrated that Mageb16 (41 kDa) is distributed in cytosol and/or in surface membrane in undifferentiated ESCs. A transcriptome study performed at  differentiated short hairpin RNA (shRNA)-mediated Mageb16 knockdown (KD) ESCs and scrambled control (SCR) ESCs until a period of 22 days, revealed that Mageb16 KD ESCs mainly differentiated towards cells expressing mesodermal and cardiovascular lineage - gene markers. Gene markers of other mesoderm-oriented biological processes such as adipogenesis, osteogenesis, limb morphogenesis and spermatogenesis were also significantly enriched in the differentiated Mageb16 KD ESCs. The expression levels of contractile genes were higher in differentiated Mageb16 KD ESCs when compared to differentiated SCR and wild ESCs, suggesting a higher cardiomyogenic potential of Mageb16 depleted ESCs. Further analysis indicates  that regulative epigenetic networks and nucleocytoplasmic modifications induced by the depletion of Mageb16, may play a probable role in differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app