Add like
Add dislike
Add to saved papers

Manure amendment increases the content of nanomineral allophane in an acid arable soil.

Scientific Reports 2017 October 28
Natural nanoparticles are of central importance in the environment, e.g. sorption of soil organic carbon (SOC) and contaminants. A large number of study have focused on the metal binding, transport and ecotoxicity of nanoparticles. Fertilizer amendments are routinely applied to arable soils and induce changes in soil chemical, physical and biological properties. However, the effects of fertilizer amendments on natural nanoparticles are still unknown. In this study, soil nanoparticles were separated from acid red soil (Ferralic Cambisol) including long-term (26 years) treatments of unfertilized control (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and raw pig manure (M). The results from high-resolution transmission electron microscopy (HRTEM) and Fourier-transformed infrared (FTIR) spectroscopy indicated that nanoparticles in red soil were heterogeneous organo-mineral associations with irregular shapes, regardless of fertilization history. In addition, kaolinite and allophane occurred in the soil nanoparticles. Intriguingly, we found the content of allophane under M treatment (0.64 g kg-1 ) was much higher than under CK and NPK treatments. However, the CK (0.27 g kg-1 ) and NPK (0.21 g kg-1 ) had similar allophane concentrations. Our study may indicate long-term organic manure amendment initializes positive feedback loop for further SOC sequestration. However, the mechanisms for the enhancement of nanomineral allophane by manure amendment deserve further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app