Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Substrate analog interaction with MCR-1 offers insight into the rising threat of the plasmid-mediated transferable colistin resistance.

Colistin is considered a last-resort antibiotic against most gram-negative bacteria. Recent discoveries of a plasmid-mediated, transferable mobilized colistin-resistance gene ( mcr-1) on all continents have heralded the imminent emergence of pan-drug-resistant superbacteria. The inner-membrane protein MCR-1 can catalyze the transfer of phosphoethanolamine (PEA) to lipid A, resulting in colistin resistance. However, little is known about the mechanism, and few drugs exist to address this issue. We present crystal structures revealing the MCR-1 catalytic domain (cMCR-1) as a monozinc metalloprotein with ethanolamine (ETA) and d-glucose, respectively, thus highlighting 2 possible substrate-binding pockets in the MCR-1-catalyzed PEA transfer reaction. Mutation of the residues involved in ETA and d-glucose binding impairs colistin resistance in recombinant Escherichia coli containing full-length MCR-1. Partial analogs of the substrate are used for cocrystallization with cMCR-1, providing valuable information about the family of PEA transferases. One of the analogs, ETA, causes clear inhibition of polymyxin B resistance, highlighting its potential for drug development. These data demonstrate the crucial role of the PEA- and lipid A-binding pockets and provide novel insights into the structure-based mechanisms, important drug-target hot spots, and a drug template for further drug development to combat the urgent, rising threat of MCR-1-mediated antibiotic resistance.-Wei, P., Song, G., Shi, M., Zhou, Y., Liu, Y., Lei, J., Chen, P., Yin, L. Substrate analog interaction with MCR-1 offers insight into the rising threat of the plasmid-mediated transferable colistin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app