Journal Article
Review
Add like
Add dislike
Add to saved papers

Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes.

Growth in the nanotechnology sector is likely introducing unnatural formations of materials on the nanoscale (10-9 m) to the environment. Disposal and degradation of products incorporating engineered nanomaterials (ENMs) are likely being released into natural aquatic systems un-intentionally primarily via waste water effluents. The fate and behaviour of metallic based nanoparticles (NPs) such as silver (Ag) in aquatic waters is complex with high levels of variability and uncertainty. In-situ physical, biological and chemical (natural attenuation) processes are likely to influence ENM fate and behaviour in freshwater systems. Surfaced functionalized particles may inhibit or limit environmental transformations which influence particle aggregation, mobility, dissolution and eco-toxic potential. This paper focuses on ENM characteristics and the influence of physical, chemical and biological processes occurring in aquatic systems that are likely to impact metallic ENMs fate. A focus on silver NPs (while for comparison, reporting about other metallic ENMs as appropriate) released to aquatic systems is discussed relating to their likely fate and behaviour in this dynamic and complex environment. This paper further highlights the need for specific risk assessment approaches for metallic ENMs and puts this into context with regard to informing environmental policy and potential NP influence on environmental/human health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app