Add like
Add dislike
Add to saved papers

Spatially explicit risk approach for multi-hazard assessment and management in marine environment: The case study of the Adriatic Sea.

In the last few decades the health of marine ecosystems has been progressively endangered by the anthropogenic presence. Natural and human-made pressures, as well as climate change effects, are posing increasing threats on marine areas, triggering alteration of biological, chemical and physical processes. Planning of marine areas has become a challenge for decision makers involved in the design of sustainable management options. In order to address threats posed by climate drivers in combination with local to regional anthropogenic pressures affecting marine ecosystems and activities, a multi-hazard assessment methodology was developed and applied to the Adriatic Sea for the reference scenario 2000-2015. Through a four-stages process based on the consecutive analysis of hazard, exposure, vulnerability and risk the methodology allows a semi-quantitative evaluation of the relative risk from anthropogenic and natural sources to multiple endpoints, thus supporting the identification and ranking of areas and targets more likely to be at risk. Resulting output showed that the higher relative hazard scores are linked to exogenic pressures (e.g. sea surface temperature variation) while the lower ones resulted from endogenic and more localized stressors (e.g. abrasion, nutrient input). Relatively very high scores were observed for vulnerability over the whole case study for almost all the considered pressures, showing seagrasses meadows, maërl and coral beds as the most susceptible targets. The approach outlined in this study provides planners and decision makers a quick-screening tool to evaluate progress towards attaining a good environmental status and to identify marine areas where management actions and adaptation strategies would be best targeted. Moreover, by focusing on risks induced by land-based drivers, resulting output can support the design of infrastructures for reducing pressures on the sea, contributing to improve the land-sea interface management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app