Add like
Add dislike
Add to saved papers

Modification of porous PLGA microspheres by poly-l-lysine for use as tissue engineering scaffolds.

Due to their good biocompatibility, biodegradability and special shapes, porous poly(lactic-co-glycolic acid) (PLGA) microspheres show a wide application in the field of tissue engineering. Herein we demonstrate a simple and low-cost method for modifying porous PLGA microspheres with poly-l-lysine (PLL) to promote cell growth on the microspheres. Porous PLGA microspheres were first treated by sodium hydroxide (NaOH) solution to introduce carboxyl groups on their surface. Then, the hydrolyzed microspheres (PLGA-H) were immerged in PLL solution to yield PLL-impregnated microspheres (PLGA-PLL). Cell experiments showed that although the cytotoxicity of microspheres was slightly increased after PLL modification, their cell viability was still higher than 85%. Compared with PLGA and PLGA-H microspheres, PLGA-PLL microspheres were more favorable for MG63 cell to attach and proliferate due to their increased initial cell attachment numbers and enhanced cell-matrix interactions. This new modification method of porous PLGA microspheres proposes a route toward efficient repair of tissue defects at reduced risk and cost level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app