Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Glucocorticoids Suppress the Browning of Adipose Tissue via miR-19b in Male Mice.

Endocrinology 2018 January 2
Physiological levels of glucocorticoids (GCs) are required for proper metabolic control, and excessive GC action has been linked to a variety of pandemic metabolic diseases. MicroRNA (miRNA)-19b plays a critical role in the pathogenesis of GC-induced metabolic diseases. This study explored the potential of miRNA-based therapeutics targeting adipose tissue. Our results showed that overexpressed miR-19b in stromal vascular fraction (SVF) cells derived from subcutaneous adipose tissue had the same effects as dexamethasone (DEX) treatment on the inhibition of adipose browning and oxygen consumption rate. The inhibition of miR-19b blocked DEX-mediated suppression of the expression of browning marker genes as well as the oxygen consumption rate in differentiated SVF cells derived from subcutaneous and brown adipose tissue. Overexpressed miR-19b in SVF cells derived from brown adipose tissue had the same effects as DEX treatment on the inhibition of brown adipose differentiation and energy expenditure. Glucocorticoids transcriptionally regulate the expression of miR-19b via a GC receptor-mediated direct DNA binding mechanism. This study confirmed that miR-19b is an essential target for GC-mediated control of adipose tissue browning. It is hoped that the plasticity of the adipose organ can be exploited in the next generation of therapeutic strategies to combat the increasing incidence of metabolic diseases, including obesity and diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app