JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Control of Adipogenic Differentiation in Mesenchymal Stem Cells via Endogenous Gene Activation Using CRISPR-Cas9.

ACS Synthetic Biology 2017 December 16
Mesenchymal stem cells (MSCs) are of interest in regenerative medicine owing to their multilineage differentiation and self-renewal properties. Understanding the in vivo differentiation process is necessary for clinical applications including cell therapy and transplantation. This remains challenging owing to the lack of induction methods that imitate the natural programming process. Endogenous gene regulation of tissue-specific transcription factors is therefore desirable. In the present study, we demonstrated endogenous activation of adipogenic genes through the dCas9-based transcription system and achieved efficient induction of different types of adipocyte-like cells from MSCs. Interestingly, the MSCs converted via single-gene activation exhibited morphological and molecular properties of white adipocytes, while beige adipocyte-like cells were induced via multiplex gene activation of three specific transcription factors. These results reveal that the fate of MSCs can be effectively manipulated by direct activation of specific endogenous gene expression using a dCas9-based activator with reduced exogenous additives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app