JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Neurodegeneration of brain networks in the amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTLD) continuum: evidence from MRI and MEG studies.

CNS Spectrums 2018 December
Brain imaging techniques, especially those based on magnetic resonance imaging (MRI) and magnetoencephalography (MEG), have been increasingly applied to study multiple large-scale distributed brain networks in healthy people and neurological patients. With regard to neurodegenerative disorders, amyotrophic lateral sclerosis (ALS), clinically characterized by the predominant loss of motor neurons and progressive weakness of voluntary muscles, and frontotemporal lobar degeneration (FTLD), the second most common early-onset dementia, have been proven to share several clinical, neuropathological, genetic, and neuroimaging features. Specifically, overlapping or mildly diverging brain structural and functional connectivity patterns, mostly evaluated by advanced MRI techniques-such as diffusion tensor and resting-state functional MRI (DT-MRI, RS-fMRI)-have been described comparing several ALS and FTLD populations. Moreover, though only pioneering, promising clues on connectivity patterns in the ALS-FTLD continuum may derive from MEG investigations. We will herein overview the current state of knowledge concerning the most advanced neuroimaging findings associated with clinical and genetic patterns of neurodegeneration across the ALS-FTLD continuum, underlying the possibility that network-based approaches may be useful to develop novel biomarkers of disease for adequately designing and monitoring more appropriate treatment strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app