JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impairment of protein degradation and proteasome function in hereditary neuropathies.

Glia 2018 Februrary
In several neurodegenerative diseases in which misfolded proteins accumulate there is impairment of the ubiquitin proteasome system (UPS). We tested if a similar disruption of proteostasis occurs in hereditary peripheral neuropathies. In sciatic nerves from mouse models of two human neuropathies, Myelin Protein Zero mutation (S63del) and increased copy number (P0 overexpression), polyubiquitinated proteins accumulated, and the overall rates of protein degradation were decreased. 26S proteasomes affinity-purified from sciatic nerves of S63del mice were defective in degradation of peptides and a ubiquitinated protein, unlike proteasomes from P0 overexpression, which appeared normal. Nevertheless, cellular levels of 26S proteasomes were increased in both, through the proteolytic-activation of the transcription factor Nrf1, as occurs in response to proteasome inhibitors. In S63del, increased amounts of the deubiquitinating enzymes USP14, UCH37, and USP5 were associated with proteasomes, the first time this has been reported in a human disease model. Inhibitors of USP14 increased the rate of protein degradation in S63del sciatic nerves and unexpectedly increased the phosphorylation of eIF2α by Perk. Thus, proteasome content, composition and activity are altered in these diseases and USP14 inhibitors have therapeutic potential in S63del neuropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app