Add like
Add dislike
Add to saved papers

Protein-inorganic Nanohybrids: A Potential Symbiosis in Tissue Engineering.

BACKGROUND: Recently, a great interest has been paid to the development of hybrid proteininorganic nanoparticles (NPs) for tissue engineering applications to combine the merits of both inorganic and protein nanocarriers.

OBJECTIVE: This short review primarily discusses the most important advances in the application of the hybrids of proteins (gelatin, zein, silk fibroin,….etc) with inorganic NPs (calcium phosphate NPs, cadmium QDs, carbon nanotubes,…etc) in tissue engineering.

RESULTS: Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs are discussed. Nanocomposite films, electrospun nanofibrous scaffolds, nanostructured colloidal composite gels and nanocomposite lyophilized sponges are among the most common platforms of protein-inorganic nanohybrid formulations used in regenerative medicine.

CONCLUSION: protein-inorganic nanohybrids could serve as promising platforms for different biomedical applications including bone and cartilage tissue regeneration, imaging of engineered tissues, development of antithrombogenic implant biomaterials and anti-bacterial wound dressing as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app