Add like
Add dislike
Add to saved papers

Pressure induced topological phase transition in layered Bi 2 S 3 .

A large bulk band gap and tunable Dirac carriers are desired for practical device applications of topological insulators. However, most known topological insulators are narrow gap materials and the manipulation of their Dirac surface states is limited by residual bulk charge carriers originating from intrinsic defects. In this study, via density functional theory based first-principles calculations, we predict that a layered hexagonal structure of Bi2 S3 is stable, and it becomes a topological insulator under a moderate compressive pressure of about 5.3 GPa. Interestingly, we find that the strength of the spin-orbit interaction in Bi2 S3 can be effectively enhanced by the applied pressure. This leads to an increased inverted band gap with pressure, which can reach 0.4 eV with a pressure of 13.7 GPa. Compared to Bi2 Se3 , intrinsic defects are suppressed in Bi2 S3 under both cation- and anion-poor growth conditions. Our calculations predict a new Bi-based topological insulator, and also shed light on control over spin-orbit interactions in Bi2 S3 and tuning of its topological properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app