Add like
Add dislike
Add to saved papers

Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate.

OBJECTIVE: To evaluate the long-term effects of treatments used in MS on the T-cell trafficking profile.

METHODS: We enrolled 83 patients with MS under fingolimod (FTY), natalizumab (NTZ), dimethyl fumarate (DMF), or other disease-modifying treatments (DMTs). Blood was drawn before treatment onset and up to 36-48 months. The ex vivo expression of CNS-related integrins (α4β1 and αL subunit of LFA-1) and the gut-related integrin (α4β7) was assessed using flow cytometry on CD4+ and CD8+ T cells. The adhesion profiles of CD3+ T cells to specific integrin ligands (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], and mucosal vascular addressin cell adhesion molecule-1 [MAdCAM-1]) were measured in vitro before and after 12 and 36-48 months.

RESULTS: NTZ decreased the frequency of α4β1+ and α4β7+ integrin expressing T cells and the binding of these cells to VCAM-1 and MAdCAM-1, respectively. After 12 months, DMF induced a decreased frequency of αL high CD4+ T cells combined with reduced binding to ICAM-1. By contrast, with FTY, there was a doubling of the frequency of α4β1+ and αL high , but a decreased frequency of α4β7+ T cells. Strikingly, the binding of α4β1+ , α4β7+ , and to a lesser extent of αL high T cells to VCAM-1, MAdCAM-1, and ICAM-1, respectively, was decreased at month 12 under FTY treatment. The presence of manganese partially restored the binding of these T cells to VCAM-1 in vitro, suggesting that FTY interferes with integrin activation.

CONCLUSIONS: In addition to NTZ, DMF and FTY but not other tested DMTs may also decrease T-cell-mediated immune surveillance of the CNS. Whether this mechanism may contribute to the onset of CNS opportunistic infections remains to be shown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app