Add like
Add dislike
Add to saved papers

Potential of mean force between oppositely charged nanoparticles: A comprehensive comparison between Poisson-Boltzmann theory and Monte Carlo simulations.

Scientific Reports 2017 October 27
Ion-mediated interactions between like-charged polyelectrolytes have been paid much attention, and the Poisson-Boltzmann (PB) theory has been shown to fail in qualitatively predicting multivalent ion-mediated like-charge attraction. However, inadequate attention has been paid to the ion-mediated interactions between oppositely charged polyelectrolytes. In this work, the potentials of mean force (PMF) between oppositely charged nanoparticles in 1:1 and 2:2 salt solutions were investigated by Monte Carlo simulations and the PB theory. Our calculations show that the PMFs between oppositely charged nanoparticles are generally attractive in 1:1 and 2:2 salt solutions and that such attractive PMFs become weaker at higher 1:1 or 2:2 salt concentrations. The comprehensive comparisons show that the PB theory can quantitatively predict the PMFs between oppositely charged nanoparticles in 1:1 salt solutions, except for the slight deviation at very high 1:1 salt concentration. However, for 2:2 salt solutions, the PB theory generally overestimates the attractive PMF between oppositely charged nanoparticles, and this overestimation becomes more pronounced for nanoparticles with higher charge density and for higher 2:2 salt concentration. Our microscopic analyses suggest that the overestimation of the PB theory on the attractive PMFs for 2:2 salt solutions is attributed to the underestimation of divalent ions bound to nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app