Add like
Add dislike
Add to saved papers

Nonlinear magnetoelectric effect in paraelectric state of Co4Nb2O9 single crystal.

Scientific Reports 2017 October 27
We report the structural, magnetoelectric (ME), magnetic and electric control of magnetic properties in Co4Nb2O9 (CNO) single crystal. A detailed ME measurement reveals a nonlinear ME effect instead of a linear ME effect in CNO single crystal. By fitting the magnetization-electric field (M-E) curve, it can be found that the linear ([Formula: see text]) and quadratic (γ) coefficients equal to ~8.27 ps/m and ~-6.46 ps/MV for upper branch, as well as ~8.38 ps/m and ~6.75 ps/MV for the lower branch. More importantly, a pronounced response was observed under a small cooling magnetic field, which cannot even cause the spin flop. This suggests a magnetoelectric effect can occur at paraelectric state for CNO single crystal. Furthermore, we also found that the magnetization of every axis responds to electric field applied along a-axis, but fails to do so when the electric field is applied c-axis. Such findings supply a direct evidence to the magnetic structure and ME coupling mechanism indirectly reflected by our neutron experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app