Add like
Add dislike
Add to saved papers

N 6 -adenine DNA methylation demystified in eukaryotic genome: From biology to pathology.

Biochimie 2018 January
N6 -methyl-2'-deoxyadenosine (m6dA) is a well characterized DNA modification in prokaryotes. Its existence in eukaryotic DNA remained doubtful until recently. Evidence suggests that the m6dA levels decrease with the increasing complexity of eukaryotic genomes. Analysis of m6dA levels in genome of lower eukaryotes reveals its role in gene regulation, nucleosome positioning and early development. In higher eukaryotes m6dA is enriched in nongenic region compared to genic region, preferentially in chromosome X and 13 suggesting a chromosome bias. High levels of m6dA during embryogenesis as compared to adult tissues are indicative of its importance during development and possible association with regeneration capabilities. Further, decreased levels of m6dA in diabetic patients has been correlated with expression of Fat mass and obesity-associated (FTO) which acts as m6A demethylase. m6dA levels have also been reported to be decreased in different types of cancers. The present review highlights the role of m6dA modification in eukaryotic genomes and its functional importance in regulation of physiological and pathological processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app