JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Hierarchical, imbalanced pro-inflammatory cytokine networks govern the pathogenesis of chronic arthropathies.

BACKGROUND: Chronic inflammatory arthropathies, such as rheumatoid arthritis (RA), spondyloarthritis, including psoriatic arthritis (PsA), ankylosing spondyloarthritis (AS), osteoarthritis (OA), and intervertebral disc degenerative disease (DDD) constitute major public health problems that are anticipated to grow significantly as the human population ages. However, many aspects concerning the molecular mechanisms underlying their onset and progression remain unclear.

DESIGN: This narrative review critically analyzes the molecular mechanisms underlying the inflammation-associated pathogenesis of the aforementioned joint diseases. This includes, in particular, the major role played by several key soluble factors (such as cytokines and the associated signaling pathways, designated as "fragile nodes") produced by local cells and recruited to the joints' immune cells, whose elimination by specific drugs has dramatically improved the diseases' symptomatology and outcome in human clinical trials or in rodent arthritis models.

HYPOTHESIS AND THE AIM OF THIS REVIEW: We hypothesize that the pathogenesis of chronic inflammatory arthropathies is governed by hierarchical, imbalanced pro-inflammatory cytokine networks (HIPICNs) (comprising a combination of fragile nodes) that are created during the development of both autoimmune (RA, PsA, and AS) and non-autoimmune (OA and DDD) disorders. The main aim of this review is to provide evidence that despite substantial pathobiological differences between these arthropathies, the HIPICNs created are quite common, thus justifying the merging of these disorders mechanistically and suggesting that these common mechanisms exist in the onset and progression of different joint diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app