JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Radical Breakthroughs in Natural Product and Cofactor Biosynthesis.

Biochemistry 2018 January 31
The radical SAM (S-adenosyl-l-methionine) superfamily is one of the largest group of enzymes with >113000 annotated sequences [Landgraf, B. J., et al. (2016) Annu. Rev. Biochem. 85, 485-514]. Members of this superfamily catalyze the reductive cleavage of SAM using an oxygen sensitive 4Fe-4S cluster to transiently generate 5'-deoxyadenosyl radical that is subsequently used to initiate diverse free radical-mediated reactions. Because of the unique reactivity of free radicals, radical SAM enzymes frequently catalyze chemically challenging reactions critical for the biosynthesis of unique structures of cofactors and natural products. In this Perspective, I will discuss the impact of characterizing novel functions in radical SAM enzymes on our understanding of biosynthetic pathways and use two recent examples from my own group with a particular emphasis on two radical SAM enzymes that are responsible for carbon skeleton formation during the biosynthesis of a cofactor and natural products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app